Evidences for Kaposi's sarcoma Originating from Mesenchymal Stem Cells through Mesenchymal-to-endothelial Transition

Yuqing Li¹, Canrong Zhong¹, Wenjing Yu², Songtao Shi², Yan Wang¹and Yan Yuan^{1,3}

Institute of Human Virology, Sun Yat-sen University¹; Department of Anatomy and cell Biology², Department of Microbiology³, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104

Oral Transmission of KSHV and AIDS-KS

- ₭ KSHV is mainly shed in saliva of infected individuals and oral exposure to infectious saliva is the major risk factor for the acquisition of KSHV. Thus, oral transmission is the major route of KSHV infection.
- ૪ In AIDS-KS patients, oral cavity is often the first site of KS and the most common intraoral KS sites are palate or gingiva. Oral KS appears to be more aggressive and malignant.

Questions: What is the primary target cell for KSHV infection in oral cavity? What is the cellular origin of KS spindle cells?

The Current Models for Origin of KS Spindle Cells

KS Lesions Express <u>Ne</u>uroectodermal <u>Stem Cell Marker (Nestin)</u>

Case	KS Type	Age	Tumor	LANA	Nestin	CD29	CD34	CD133
			Location					
1	AIDS-KS	31	Palate	+	+	+	+	+
2	AIDS-KS	30	Right Palm	+	+	+	+	-
3	AIDS-KS	24	Rectum	+	+	+	+	-
4	AIDS-KS	26	Cervical Lymph Node	+	+	+	+	+
5	AIDS-KS	61	Facial Skin	+	+	+	+	+

Expression of Nestin in KS Suggest A Lineage Connection Between MSCs and KS

Dental pulp (DPSCs, SHEDs)

> Periodontal ligament (PDLSCs, pdNSCs)

Neural Crest Cells migrate to form the craniofacial mesenchyme that differentiates into various cranial ganglia and craniofacial cartilages and bones.

Expression of Nestin in KS Suggest A Lineage Connection Between MSCs and KS

Neural Crest Cell Contributions to the Craniofacial Development

The expression of <u>Ne</u>uroectodermal <u>stem cell</u> marker (Nestin) and oral MSC marker CD29 in KS spindle cells provides evidence that KS may originate from oral MSCs.

KSHV infection of oral MSCs may result in a mesenchymal-to-endothelial (MEndT) transition, which leads to sarcomagensis of Kaposi's sarcoma (KS).

Oral MSCs Are Susceptible to KSHV Infection And Undergo Morphological Changes

PDLSC

Surface Markers of Oral MSC Infected with KSHV

	CD31	CD34	CD44	CD90	CD105	CD166
PDLSC	9.5%	1.4%	98.8%	99.5%	98%	98.6%
KSHV-PDLSC	46.5%	18.1%	95.9%	89.4%	90.7%	85.7%

KSHV Infection Enhances Osteogenic, Adipogenic and Endothelial Differentiation

Kidney Capsule Implantation of KSHV-infected MSCs

Kidney Capsule Implantation of KSHV-infected MSCs

RNA-seq Analysis for Gene Expression Profiles of MSCs upon KSHV Infection

KSHV-induced Differentially Expressed Genes (DEGs) and Their Gene Ontology

Cytokine Network in KSHV-infected PDLSCs

Function cluster	KSHV-PDLSC vs. PDLSC			KSHV-HDMEC vs. HDMEC				KSHV-HMVEC vs. HMVEC				
	Cytokine	Change	Receptor	Change	Cytokine	Change	Receptor	Change	Cytokine	Change	Receptor	Change
	CCL2	+	CCR1	+	CCL14	+			CCL14	+		
	CCL5	+			CCL15	+			CCL15	+		
	CCL7	+	CCR3	+	CCL23	+			CXCL5	+		
	CCLS	+			CXCL13	-	CXCR5	+	CXCL10	+		
	CCL13	+			CXCL18	-	CXCR6	+	CXCL11	+		
Chemotaxis	CXCL1	+							CXCL12	-	CXCR4	+
	CXCL3	+							CXCL16	+		
	CXCL5	+										
	CXCL6	+										
	CXCL10	+										
	CXCL11	-	CXCR7	+								
	CXCL12	-										
	CXCL16	+										
	ANGPT4	+			ANGPT2	+			ANGPT2	+		
	ANGPTL1	+			LEP	-	LEPR	+	ANGPTL2	+		
	ANGPTL2	+			EDN1	-	EDNRB	+				
Endothelial development	ANGPTL4	+			FGF12	+						
&	ANGPTL5	+			FGF13	+						
angiogenesis	EDN1	-	EDNRA	+								
			EDNRB	+								
	FGF2(bFGF)	+										
	FGF7	+										
	FIGF(VEGFD)	+										
	PGF	+										
	VEGFC	+	VEGFR3	+								
	IL1a	+			IL1a	-	IL1R1	+	IL6	+		
	IL1ß	+			IL1B	-			TNFSF4	+		
	IL6	+			IL3	-	IL3RA	+	TNFSF18	+		
Inflammation	IL10	-	IL10R	+	IL5	+						
	TNFSF4	+			ΤΝFα	+						
	TNFSF10	+			TNF5F10	+						
	TNFSF13B	+										
	TNFSF15	+									_	
	TGF _{B3}	+	TGF ^{βR2}	+	TGFa	+	-		PGF	+	-	-
	OSM	+										
Growth	IGF1	+										
&	TSP1	-	CD36	+								
differentiation	INHBA	+										
	INHBB	+										

Cytokine Secretion in KSHV-infected MSCs and LECs

KSHV Signature Genes in Virus-infected MSCs

MEndT in KSHV-infected MSCs and EndMT in KSHV-infected Endothelial Cells

KSHV Signature Genes in Virus-infected MSCs

Function Cluster			KSHV-MSC	KS vs.	KSHV-HDMEC	KSHV-HMVEC	KSHV-LEC	KSHV-BEC
Function	Cluster	Gene symbol	vs. MSC	skin	vs. HDMEC	vs. HMVEC	vs. LEC	vs. BEC
		BGN	44	† †	_	4	44	4
		DSP	† †	++	_	Ψ	44	_
Mesenchy	mal to	EDNRA	*†	**	_	_	4	_
Endothelial T	ransition	FGF2 (bFGF)	Ť	**	_	_	-	44
Lindothendi		MMP11	Ť	**	_	_	4	↑
		PDPN	**	**	44	**	•	↑
		PROX1	**	**	1	•	44	↑
		PGF	*†	**	•	1	4	_
		PML	**	**	_	_	4	_
		TGFB3	^	**	_	_	_	_
		TGFBR2	^	T T		-	4	-
Vessel development		ANGPTL2	† †	^	_	↑	4	† †
		VCAM1	† †	**	_	_	-	*
	-		† †	T T	1	_	4	-
		CCL5	ተተ	ተተ	_	_	^	† †
		CCL8	† †	**	_	_	•	_
	Chemotaxis	CXCL10	† †	44	_	† †	-	_
		SHC3	† †	44	_	_	-	_
		STAT1	† †	T T	ተተ	_	_	_
		APOL2	† †	ተተ		_	4	_
		APOL3	† †	**	_	_	-	*
		CFH	† †	**	_	_	-	_
		FN1	**	**	_	44	44	*
	Inflammation	IFI16	*†	**	_	**	•	_
		IL-1RN	† †	$\Psi\Psi$	_	_	_	_
		LY96	† †	**	_	_	_	^
		NT5E	† †	††	•	1	4	-
		PLA2G4C	† †	**	_	_	_	_
	Other genes	FCGRT	**	**	_	_	_	_

Common DEGs in KSHV-PDLSC vs. PDLSC and KS signature

MEndT in KSHV-infected MSCs and EndMT in KSHV-infected Endothelial Cells

Summary

- □ Oral mesenchymal stem cells can be efficiently infected by KSHV, suggesting these cells might be primary target cells for KSHV infection in oral cavity.
- AIDS-KS spindle cells express <u>Ne</u>uroectodermal <u>st</u>em cell marker (Nestin) and oral MSC marker CD29, suggesting the oral/craniofacial MSC lineage of AIDS-associated KS.
- KSHV infection efficiently promotes oral MSC osteogenic, adipogenic and endothelial and angiogenic differentiation. KSHV-infected oral MSCs underwent endothelial differentiation in mouse kidney capsule, suggesting a mesenchymal-to-endothelial transition (MEndT).
- RNA-seq based gene expression profiling revealed that KSHV infection of oral MSCs results in up-regulation of a class of genes that are involved in MEndT and KS phenotypes, including production of a large number of chemokines/cytokines, growth factors and angiogenic factors, the characteristics of KS.
- Taken together, our results suggest that KSHV-infected oral MSCs could serve as progenitors of KS cells and MEndT driven by KSHV infection contributes to the development of KS.

Acknowledgment

Yuan Lab

- Yan Wang, Ph.D.
- Yuqing Li, Graduate Student
- Canrong Zhong, Graduate Student
- Dongcheng Liu, Graduate Student
- Shi Lab (University of Pennsylvania)
- Wenjing Yu, Graduate Student

The Current Model for Origin of KS Spindle Cells

	CD31	D2-40	PAL-E	Nestin	CD29	CD133	LAN A
LEC	+	+	+	-	-	-	+
BEC	+	-	+	-	-	-	+
EPC	+	-	-	-	-	+	+
MSC	-	-	-	+	+	-	+
MSC→EPC	-	-	-	+	+	+	+
MEndT	+	+	+	+	+	+	+
BEC≒LEC	+	+	+	-	-	-	+

The Current Model for Origin of KS Spindle Cells

Case	KS Type	Age	Tumor	LANA	Nestin	CD29	CD34	CD133
			Location					
1	AIDS-KS	31	Palate	+	+	+	+	+
2	AIDS-KS	30	Right Palm	+	+	+	+	-
3	AIDS-KS	24	Rectum	+	+	+	+	-
4	AIDS-KS	26	Cervical Lymph Node	+	+	+	+	+
5	AIDS-KS	61	Facial Skin	+	+	+	+	+